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A new algorithm for image inpainting based on the searching of redundancy for corner points across dif-
ferent scales and orientations is proposed. The searching utilises the nonsubsampled contourlet trans-
form (NSCT) of the original image. The target region is filled-in following the priority which is given to
the corner points that accumulate a high energy at different orientations and scales, and also having a
high level of confidence. In each iteration, the source patch chosen is copied onto the target patch pro-
ducing the minimum dispersion across different scales and orientations of the NSCT within it. This
approach – to firstly fill-in corner points of high energy and confidence which minimize the dispersion
in the target patch across different scales and orientations – have been tested on two groups of images,
one group with broken edges and objects and a second group with large objects to be erased. The pro-
posed algorithm was compared with three other methods and results obtained indicate that the capabil-
ity of this algorithm is sustainable.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Several definitions of image inpainting can be found in the liter-
ature but the most intuitive might be as follows: the technique of
modifying an image in an undetectable form (Bertalmio et al.,
2000). Image inpainting has been applied on different areas from
digital photography for restoration until compressed sensor theory
(Kahge et al., 2012). In the movies context has been used as a
mechanism to video post-production, e.g., stereo image inpainting
(Hervieu et al., 2011; Arias et al., 2012) address the reconstruction
of missing information in pairs of stereo images.

One the basis of the image inpainting comes from its relation-
ship with texture synthesis employed to repair digitized images
(Efros and Leung, 1999). In this form, these algorithms normally
copy image patches, or pixels, from the original image while avoid-
ing blurring. However, these texture synthesis algorithms are un-
able to extend to lineal structure.

The objective of image inpainting is to translate the information
from the surroundings to the area to be filled (target region). These
methods are based on a partial differential equation (PDE) which is
objective to the extension of the lineal structure using the isophote
information (Bertalmio et al., 2000; Criminisi et al., 2003; Chen
et al., 2007; Chan and Shen, 2001). The importance of the order
in filling the target region, has been related in different papers
(Criminisi et al., 2003; Wu and Ruan, 2006). In these papers, two
terms to establish the priority of the information to be filled are
used, the data term and the confidence term. The data term is a
measure of the isophote strength hitting the boundary of the target
region. The confidence term gives the amount of credible informa-
tion that surrounds a pixel in the target region.

On the other hand, different algorithms of texture synthesis
have used analysis multiresolution approaches, such as the
Laplacian pyramid (De Bonet, 1997) or wavelet decomposition
(Simoncelli and Portilla, 1998). In Yamauchi et al. (2003), the image
inpainting and texture synthesis were combined in a multiresolu-
tion approach by using a discrete cosine transform and a Gaussian
decomposition. Li et al. (2013) proposed a model of inpainting im-
age using DCT-Haar multiresolution analysis with applications to
impulsive noise removal and filling missing information on moder-
ate-sized regions.

If we try to modify an image in an undetectable way, we can
characterize the result of image inpainting in the target region as
a smooth zone and/or with a small dispersion. Thus when the
source patch is copied to the target patch, the production of a small
dispersion was taken into account in Goyal et al. (2010). For this,
the variance must be minimized when the source patch is copied
to the target patch.

An inpainting method that can be used in images as well as in
video was presented in Wexler et al. (2007). In this algorithm,
the fill-in of the target region occurs by choosing the value of each
pixel according to its neighbourhood. The accuracy of a pixel value
depends on whether its local neighbourhood forms a coherent
structure. Both Goyal et al. (2010) and Wexler et al. (2007) assert
that the sum of squared differences (SSD) of colour information,
which is so widely used for image completion, is not sufficient to
establish the similarity between two patches.
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Fig. 1. Nonsubsampled contourlet transform: (A) scheme of the NSCT; and (B) idealized frequency partitioning together with the response for each NSCT band.
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Here we show the importance of the order of filling of the target
region, as seen previously in Criminisi et al. (2003) and Wu and
Ruan (2006). But instead it is based on the corner points having
a high enough confidence level and high energy across orientations
and scales for the nonsubsampled contourlet transform.

Also we demonstrate that selection criteria which are aimed
only to minimize the sum of squared differences between the
source and the target patch can lead to results with many artefacts.
To overcome this problem, instead our method chooses the source
patch in two steps: First, a source-patch candidate set is selected;
and second, the candidate that produces a minimal dispersion
across different orientations and scales for the nonsubsampled
contourlet transform is obtained.
This paper is organized as follows. Section 2 reviews the non-
subsampled contourlet transform (NSCT). Section 3 presents a no-
vel technique for image inpainting using the nonsubsampled
contourlet transform. A complete set of experiments is next pre-
sented in Section 4. There, the method proposed is compared with
three different models: the Criminisi’s algorithm (Criminisi et al.,
2003), the Wexler’s algorithm (Wexler et al., 2007) and the Goyal’s
algorithm (Goyal et al., 2010). Section 5 concludes.

2. Nonsubsampled contourlet transform

In order to recover a target region for a given image, we
have to eliminate transients from some undesired object or
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Fig. 2. Nonsubsampled pyramid and nonsubsampled directional filter bank. (A) Left: pyramidal decomposition. Right: frequency partitioning. (B) Left: four-channels NSDFB built
with two-channel fan filter bank. Right: idealized frequency partitioning.

1510 R. Rodriguez-Sánchez et al. / Pattern Recognition Letters 34 (2013) 1508–1518
noise while producing a nearly stationary signal which
maintains the number of transients at least in the target
region.

In this context, signal theory offers a variety of transforms that
allow us to distinguish where these transients occur and where
they are absent. They include the Gabor (Daugman, 1988), the
wavelets (Daubechies, 1992) and the contourlet (Do and Vetterli,
2005) transforms. All of these transforms offer an efficient repre-
sentation in the sense that they have the ability to capture signif-
icant information of an object of interest given a small
description.
These representations also infer a congruence level for the
information which represent, with the information being more
congruent whenever it is present across different scales and orien-
tations (Rodriguez-Sánchez et al., 1999).

With respect to the image inpainting process, this property is
very interesting for two reasons:

� It allows to establish the order to fill-in the target region.
� Also, it can be used to decide what information from some

source area is the candidate to replace undesired data that is
present in the target region.
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p-pixel with the highest priority which should be fill in using the source patch Wq from U. (B) Scheme for the proposed image inpainting algorithm.
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A new multi-scale image decomposition called the contourlet
transform (CT) was previously presented (Do and Vetterli, 2005).
This transform combines the Laplacian pyramid (LP) (Do and
Vetterli, 2003) and the directional filter bank (DFB) (Bamberger
and Smith, 1992). Compared to the discrete wavelet transform
(DWT), the CT is a decomposition characterized by multi-direction
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and anisotropy in addition to multi-scale and localization. Thus,
the CT can represent edges and other singularities along curves
much more efficiently (i.e., using fewer coefficients). However,
the CT lacks the shift-invariance which is desirable in many image
applications, such as image enhancement or image denoising.

The nonsubsampled contourlet transform (NSCT) was pre-
sented as an overcomplete transform (da Cunha et al., 2006), which
has been successfully used in image denoising (da Cunha et al.,
2006) and image enhancement (Zhou et al., 2005). This transform
is characterized as a shift-invariant version of the contourlet trans-
form (CT) (Do and Vetterli, 2005). The CT applies the Laplacian pyr-
amid (LP) to obtain a multi-scale decomposition and a directional
filter bank (DFB) (Bamberger and Smith, 1992). In the NSCT, any
downsamplers and upsamplers during the decomposition and
the reconstruction of the image are realized to avoid the fre-
quency-aliasing of the CT and, at the same time, to achieve the
shift-invariance. For this, the NSCT uses the nonsubsampled pyra-
mids filter banks (NSPFB) and the nonsubsampled directional filter
banks (NSDFB).

Fig. 1 shows a scheme for the NSCT. The same figure also illus-
trates the idealized frequency partitioning together with the re-
sponse for each NSCT band.

The NSPFB is a two-channel nonsubsampled filter bank (NFB).
To achieve the multi-scale decomposition, the filters for the next
stage are obtained by upsampling the filters of the previous state
with the sampling matrix.

D ¼ 2I ¼
2 0
0 2

� �
ð1Þ

which gives a multi-scale decomposition without need of additional
filter design. In Fig. 2(A) it is shown the NSPFB decomposition with
J = 3 stages. The ideal support of the lowpass filter at the j-th stage is

the region ½�ðp=2jÞ; ðp=2jÞ�
2
. The complement of the lowpass de-

fines the support of the high-pass filter ½�ðp=2ðj�1ÞÞ; ðp=2ðj�1ÞÞ�
2
n

½�ðp=2jÞ; ðp=2jÞ�
2
. The filter in each level is calculated as:

H�nðzÞ ¼

H1ðz2n�1IÞ
Yn�2

j¼0

H0ðz2j IÞ; 1 6 n 6 J

Yn�2

j¼0

H0ðz2j IÞ; n ¼ J þ 1

8>>>>><>>>>>:
ð2Þ

where H0ðzÞ and H1ðzÞ are the lowpass filter and highpass filter at
the first stage, respectively. Fig. 2(B) illustrates a four-channel
directional decomposition. In the second level, the upsampled fan
filters UjðzDÞ j ¼ 0;1 have checker-board frequency support and
the sampling matrix D is the quincunx matrix:

D ¼
1 �1
1 1

� �
ð3Þ

When the filters UjðzDÞ are combined with the fan filters UiðzÞ
(i ¼ 0;1) in the first level, we obtain the four-channel directional
decomposition. The NSCT is obtained by combining the NSPFB
and the NSDFB (see Fig. 1).
3. A new inpainting method

The proposed method is based on the Criminisi’s algorithm
(Criminisi et al., 2003). Thus it combines the advantages of
‘‘textures synthesis’’ algorithms to obtain a large image from
sample textures and ‘‘inpainting’’ techniques for filling in small
image gaps. The elements of the Criminisi’s method are shown in
Fig. 3(A).

The Criminisi’s algorithm makes use of two different terms:
1. A data term DðpÞwhich is a function of the strength of isophotes
hitting the front dX. This term is defined as:
DðpÞ ¼
jrI?p � npj

a

2. A confidence term CðpÞ which is a measure of the amount of

reliable information surrounding the pixel p (which has to be
filled-in)
CðpÞ ¼
P

q2wp\�XCðqÞ
jWpj
Using both terms, the priority of a point p is defined as:

PðpÞ ¼ DðpÞ � CðpÞ

A scheme of this process is shown in Algorithm 1

Algorithm 1. Main steps of the Criminisi’s algorithm

1. For each p 2 dXP

(a) CðpÞ ¼ q2Wp\ðI�XÞ

CðqÞ

jWq j

(b) DðpÞ ¼ jrI?p �np j
a

(c) PðpÞ ¼ DðpÞ � CðpÞ
2. p ¼ arg maxq2dXðPðqÞÞ
3. Define Wp as the target patch centred at the p-pixel with

the highest priority
4. Wq� ¼ arg minWq2U SSDðWp;WqÞ with SSD being the sum of

square differences.
5. Copy the source patch Wq� onto the Wp target patch.
6. if dX – ; go to 1

3.1. Image Inpainting based on the contourlet transform.

In this section, the proposed algorithm is discussed in detail.
This novel technique is based on:

1. Exemplar-based image inpainting which is aimed to fill in the
target region following image texture (Criminisi et al., 2003;
Efros and Freeman, 2001; Efros and Leung, 1999; Liang et al.,
2001).

A multiresolution analysis to achieve an approximation for
exemplar-based image inpainting.

The main stages of the algorithm are shown in Fig. 3(B):

1. Selecting the higher priority patch with centre at p.
2. Obtaining the source patch to be copied onto the target patch.

3.2. Selecting the higher priority patch with centre at p

At this stage the algorithm needs to select the target patch Wp,
with the point centre p to be filled in. To this aim, the confidence
term is defined as given in the Criminisi’s algorithm. However,
the data term is defined as the strength of the isophotes hitting
the front dX across different scales and orientations of the contour-
let domain. Thus, we first calculate a J � level NSCT for the original
image by obtaining the corresponding coefficients at the patch p.

fCj0ðpÞ;Cj;lðpÞg ðj0 P j P 1; l ¼ 1;2; . . . ;2lj Þ

where lj denotes the number of levels in the NSDFB at the j-th scale.
Cj0 represents the lowpass subband coefficients at the coarse scale
and, Cj;l denotes the bandpass directional subband coefficients at
the j-th scale and the l-th orientation. In the following we will note
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Cj;l as ClðjÞ. Next, we expose the different steps to obtain the data
term:

1. Corner points for each scale at different orientations. In this step
for each pixel ði; jÞ 2 dX we calculate:
fCkðsÞ;tðsÞði; jÞ ¼ jCs;kði; jÞj � jCs;tði; jÞjg 8kðsÞ; tðsÞ;
1 6 kðsÞ < tðsÞ 6 OðsÞ ð4Þ
where OðsÞ is the number of orientations at scale s. A corner point
(at a particular scale) is produced when two bands in different
orientations meet them in a particular spatial location. Therefore,
a high value of CkðsÞ;tðsÞði; jÞ means that in the ði; jÞ pixel there is a
concurrence of high energy at orientations kðsÞ and tðsÞ.
2. Corner points across different scales. This step searches for the

corner points with different orientations which can be present
at different scales. From the pyramidal structure of the nonsub-
sampled contourlet transform, it follows that each coefficient at
a given scale is associated with the same spatial location for cer-
tain coefficients at a higher scale.
Thus Eq. (5) is formulated as:
Ps
ðo1ðsÞ;o2ðsÞÞ;ðo1ðsþ1Þ;o2ðsþ1ÞÞ;...;ðo1ðJÞ;o2ðJÞÞði; jÞ ¼

YJ

n¼s

Co1ðnÞ;o2ðnÞði; jÞ ð5Þ
3. Data term. In order to derive the data term, we accumulate at
each point the values obtained in Eq. (5) for different scales
(parameter s). To compress the dynamic range of the values
we apply the natural logarithm function.
Dði; jÞ ¼ log
XJ

s¼1

Ps
ðo1ðsÞ;o2ðsÞÞ;ðo1ðsþ1Þ;o2ðsþ1ÞÞ;...;ðo1ðJÞ;o2ðJÞÞði; jÞ

 !
ð6Þ
The data term should be normalized as given in Eq. (7) in order to
achieve a trade-off between confidence and data terms, which is
needed to correctly calculate the level of priority for a point in
the target region.
Dði; jÞ ¼ Dði; jÞ
max8ðm;nÞ2dXðDðm;nÞÞ

ð7Þ
The priority of point p can be calculated following the same
definition used in the Criminisi’s algorithm:

PðpÞ ¼ DðpÞ � CðpÞ

In Fig. 4(A), the image data and confidence at the first and at the
90-th iteration respectively are shown. A black pixel in the image
implies the lowest confidence value (which is the initial value for
the target region) and a white pixel has a high confidence value.
On the other hand, with respect to the data term, the highest val-
ues correspond to points which have high energy across different
scales and orientations.

3.3. Obtaining the source patch to be copied onto the target patch

After finding the point p with the highest priority to be fill-in,
our algorithm searches the source image to find the patch that is
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most similar to the target patch. The sum of squared differences
(SSD) is used to calculate the distance between the target patch
Wp and the source patch Wq. The most similar patch Wq satisfies:

Wq ¼ arg minWq2U dðWp;WqÞ ð8Þ

When two patches Wq1 and Wq2 have the same SSD value compared
with Wp (see Fig. 4(B)), our algorithm selects the patch which min-
imizes the accumulated dispersion across different orientations and
scales.

Following the Criminisi’s algorithm, our method selects a set of
the source patches SqðpÞ which are most similar to the target patch
according to their SSD values. Thus, the steps to obtain the best
source patch are:

1. Obtain the source patch candidate set. We obtained SqðpÞ as:
SqðpÞ ¼ fWqjSSDðWp;WqÞ < �g ð9Þ
where � is a small constant value. Thus, SqðpÞ is composed of the
source patches most similar to the target patch.
2. Select the best source patch from SqðpÞ. To obtain the best source

patch from SqðpÞ we define
frj0 ðpÞ;rj;lðpÞg j0 P j P 1; l ¼ 1;2; . . . ;2lj
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Fig. 6. Broken object: Illusory triangle using a kiwi. (A) Original image; (B) original image with target region in green colour; (C) Criminisi’s result; (D) Wexler’s result; (E)
Goyal’s result; and (F) our method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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as the standard deviation associated to the coefficients in each band
of the contourlet transform for Wp.
frj0ðq,!pÞ;rj;lðq,!pÞg j0 P j P 1; l ¼ 1;2; . . . ;2lj
is the standard deviation of the contourlet coefficients within each
band, when the source patch Wq is copied onto the target patch Wp

to fill in the empty area. Then, the best source patch, Wq� is obtained
as:
Wq� ¼ arg maxWq2SqðpÞ e�rj0
ðq,!pÞ þ

X
8j;l

e�rj;lðq,!pÞ

 !
ð10Þ
With Eq. (10) we find the source patch that produces the lowest
accumulated dispersion (when is copied in the target patch), across
different orientations and scales in the NSCT domain. This property
asserts that the selected source patch continues the broken features
in the original image. On the other hand, the method would choose
a source patch making new features appear in the image (i.e., new
edges, or artifacts). From the point of view of signal analysis, these
new features, drive to new transients characterized by high energy
in some coefficients compared with the energy values of the neigh-
bouring coefficients, driving to an higher dispersion. Thus, selecting
the source patch with the lowest accumulated dispersion across dif-
ferent scales and orientations in the target patch, we do not gener-
ate new transients, keeping the transients of the original image.
An example illustrating the relationship between the minimization
of the accumulated dispersion and the continuity of the broken fea-
tures in comparison with the relationship between the maximiza-
tion of the accumulated dispersion and the generation of new
features, is shown in Fig. 4(C). For image 4(C1) and (C2) (with the
target region in green), we have obtained 4(C3) (following the Eq.
(10) minimizing the dispersion accumulated across different
orientations and scales). On the other hand, in Fig. 4(C4) is shown
the result obtained when the dispersion accumulated across differ-
ent orientations and scales is maximized. In this last image there is
a tendency to build new structures breaking the continuity of the
original structures in the image.
The fundamental steps of the proposed methodology are given in
Algorithm 2.
Algorithm 2. Fundamental steps of our algorithm

1. For each p 2 dX

(a) CðpÞ ¼
P

q2Wp\ðI�XÞ
CðqÞ

jWq j

(b) eDðpÞ ¼ log
PJ

s¼1Ps
ðo1ðsÞ;o2ðsÞÞ;ðo1ðsþ1Þ;o2ðsþ1ÞÞ;...;ðo1ðJÞ;o2ðJÞÞðpÞ

� �
(c) DðpÞ ¼ eDðpÞ

max8ðmÞ2dXðeDðmÞÞ
(d) PðpÞ ¼ DðpÞ � CðpÞ

2. p ¼ arg maxq2dXðPðqÞÞ
3. Define Wp as the target patch with highest priority
4. SqðpÞ ¼ fWqjSSDðWp;WqÞ < �g
5. Wq� ¼ arg maxWq2SqðpÞ e�rj0

ðq,!pÞ þ
P
8j;le

�rj;lðq,!pÞ
� �

6. Copy the Wq� source patch onto the target patch Wp.
7. if dX – ; go to 1

4. Results

4.1. Details of the implementation

The algorithm proposed has several parameters including num-
ber of scales, filters used in the NSCT decomposition, the threshold
to define the SqðpÞ cardinal and the dimension of the patch. For the
examples illustrated in this section, the parameters were chosen as
follows:

1. The filter used to implement the NSPFB and NSDFB is the 9/7
tap (Antonini et al., 1992).

2. The number of scales of the NSCT transform is 3. The first level
has (j ¼ 1) four directional bands, the second level has eight
directional bands and the third level with 16 directional bands
together with the lowpass band.

3. The SqðpÞ cardinal has a minimum value of 10. This number can
increase when the 10th point in SqðpÞ has a SSD-value equal
to that of other points in SqðpÞ. In this case, all points with an
SSD-value equal to the SSD-value of the 10th point in SqðpÞ
are also included.



(A2) (B2) (C2)

(D2) (E2) (F2)

(A1) (B1) (C1)

(D1) (E1) (F1)

Fig. 7. Removing object 1: torus. (A1) Original image; (B1) original image with target region in green colour; (C1) Criminisi’s result; (D1) Wexler’s result; (E1) Goyal’s result;
and (F1) our method. Removing object 2: bungee. (A2) Original image; (B2) original image with target region in green colour; (C2) Criminisi’s result; (D2) Wexler’s result; (E2)
Goyal’s result; and (F2) result of our method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. The dimension of the patch is 13� 13 pixels.

The software can downloaded from http://nautilus.ugr.

es/research/inpainting_contourlet/.
Also in this web site are shown the results of the algorithm on a

lot of examples including those of this paper. Finally,it is also pos-
sible analyse the step by step execution of the algorithm for each
image.
4.2. Comparison

The method has been compared with three models, the Crimin-
isi’s algorithm (Criminisi et al., 2003), the Wexler’s algorithm
(Wexler et al., 2007) and the Goyal’s algorithm (Goyal et al.,
2010). The parameter for the Criminisi’s algorithm is the dimen-
sion of the patch that is fixed to 13� 13 pixels. The parameters
of the Wexler’s algorithm are number of levels, neighbourhood
radius and number of rounds. By default the values are:

1. Number of levels is 4
2. Neighbourhood radius is 3
3. Number of rounds is 5

These values were applied to all examples in the following with
the exception of images 5(A1) where the neighbourhood radius
was 2 and 7(A1) where the number of levels was set to 3.

The software used to execute the different models has been
obtained from:

� http://www.cc.gatech.edu/sooraj/inpainting/: the
Criminisi’s algorithm.
� http://www.wisdom.weizmann.ac.il/vision/VideoCom-

pletion.html: the Wexler’s algorithm.

http://nautilus.ugr.es/research/inpainting_contourlet/
http://nautilus.ugr.es/research/inpainting_contourlet/
http://www.cc.gatech.edu/sooraj/inpainting/
http://www.cc.gatech.edu/sooraj/inpainting/
http://www.wisdom.weizmann.ac.il/vision/VideoCompletion.html
http://www.wisdom.weizmann.ac.il/vision/VideoCompletion.html
http://www.wisdom.weizmann.ac.il/vision/VideoCompletion.html


Table 1
Efficiency computational. Times CPU (s) by algorithm proposed.

Image CPU time (s)

Fig. 6(A) Kanizsa triangle by kiwis 321
Fig. 7(A1) torus 360
Fig. 7(A2) bungee 630
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� http://pulkitgoyal.wordpress.com/2011/01/09/
image-inpainting/: the Goyal’s algorithm.

Two groups of images have been used, a first group that con-
tains broken edges, and a second group that contains a large object
in the image that must be eliminated.

4.3. Broken edges

A valid method of inpainting should be able to reconstruct an
incomplete 2-D image in every one of its features. In this form,
the image inpainting looks real when no obvious artefacts that
cause it to look like an artificial image are present. One of the most
important features of an image are the edges which are present at
different scales and orientations. Several examples of broken edges
are shown in Fig. 5(A1) and (A2).

In these images, only two levels of grey are used, black and
white. For them, according to ‘The Connectivity Principle’ (Kanizsa,
1979) of the human disocclusion process (Chan and Shen, 2001),
humans mostly seem to prefer the connected result.

In Fig. 5(A1), the results for the Criminisi’s, Wexler’s and Goyal’s
methods are shown in images (C1), (D1) and (E1) respectively. The
result obtained by our algorithm is shown in (F1). Our method has
maintained the image structure.

Another interesting image is shown in Fig. 5(A2), where broken
edges need to be connected in different orientations. The outputs
of the Criminisi’s, Wexler’s and Goyal’s methods are shown in
(C2), (D2) and (E2) respectively. The output of our method is
shown in (F2). The result of our method has brought more lines
closer to the centre of image than the other methods, which has
kept a strong perception of the white square.

In Fig. 6(A), three pieces of a kiwi were broken to form an illu-
sory triangle. The objective of this image was to fill in each piece of
kiwi in some realistic form. The results obtained for the different
methods can be seen in Fig. 6(C)–(F). The outputs more ‘‘realistic’’
are those obtained using the Wexler’s method as well as our
method.

4.4. Removing an object from a scene

Fig. 7(A1) and (A2) show examples of object removing. In these
examples, there is an object occluding others behind it. A synthetic
image of this kind is shown in Fig. 7(A1), in which we have three
levels of grey, that is, black, medium grey and white.

The objective is to eliminate the geometric form like a torus, in
white, by filling in the hole to obtain two black ellipses. The output
of the Criminisi’s algorithm is shown in Fig. 7(C1).

A result similar to the output of the Criminisi’s method was ob-
tained by the Wexler’s method (see Fig. 7(D1)). On the other hand,
the Goyal’s method fails to fill in the ellipse on the right. In Fig. 7(F1)
the result obtained by our method can be seen. The Fig. 7(A2) is
other example of real scenes. The results obtained by the different
methods can be observed in Fig. 7(C2)–(F2) respectively.

4.5. Computational efficiency

The software has been developed under Matlab and tested in
the 2008a and 2011 versions. We show in Table 1 the CPU times
(CPU i7-860 2.80 GHz) for different images. The computational
efficiency of the algorithm depends on two factors:

1. Area (percentage) of the target region.
2. Cardinal of source patch candidate set SqðpÞ. In order to obtain a

result coherent for the different images, this number must
adopt a enough high value.

5. Conclusions

Here we propose an image inpainting algorithm using the non-
subsampled contourlet transform (NSCT). The proposed approach
is based on a new mechanism for the selection of the target patch
as well as the selection of the source patch in each iteration.

In the selection of the target patch, which is to used to fill-in the
target region, two terms are defined: a confidence term and a data
term. While the confidence term is a measure of the amount of reli-
able information surrounding a pixel, the data term is the strength
of isophotes hitting the boundary of the target region.

Here we proposed a new definition of the data term based on
the redundancy, across orientations and scales in the NSCT domain,
of the corner pixels located at the boundary of the target region.

It follows that a pixel with a high value for the data term means
that: (i) There is a corner point at a particular scale, since the high
energy level is achieved when two bands of equal scale at different
orientations meet at this particular spatial location; and (ii) this
same corner point must be present across different scales.

The interesting point is that pixels in the boundary of the target
region which are part of broken or occluded features (e.g., broken
edges) have a high value of the data term, and thus, they are iden-
tified as corner points.

Concerning the source-patch selection, we have shown that by
only using the Square Sum Differences between target and source
patch, it can produce results with artefacts.

To overcome this problem, a new mechanism of source patch
selection was proposed. Firstly we obtain the set of the most sim-
ilar source patches to the target patch by using the Square Sum Dif-
ferences. Next, from this set, we select the patch achieving the
minimum dispersion across orientations and scales when is copied
onto the target patch, which maintains the transients of the origi-
nal image while avoiding new ones. Hence, the selected source
patch continues the broken features in the original image while
avoiding the formation of artefacts.
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